Abstract

Global misbehavior detection is an important backend mechanism in Cooperative Intelligent Transport Systems (C-ITS). It is based on the local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by Road-Side Units (RSUs) called Misbehavior Reports (MBRs) to the Misbehavior Authority (MA). By analyzing these reports, the MA provides more accurate and robust misbehavior detection results. Sybil attacks pose a significant threat to the C-ITS systems. Their detection and identification may be inaccurate and confusing. In this work, we propose a Machine Learning (ML) based solution for the internal detection process of the MA. We show through extensive simulation that our solution is able to precisely identify the type of the Sybil attack and provide promising detection accuracy results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.