Abstract

BackgroundMicroRNAs (miRNAs) constitute a class of small non-coding RNAs that post-transcriptionally regulate genes involved in several key biological processes and thus are involved in various diseases, including cancer. In this study we aimed to identify a miRNA expression signature that could be used to separate between normal and malignant prostate tissues.ResultsNine miRNAs were found to be differentially expressed (p <0.00001). With the exception of two samples, this expression signature could be used to separate between the normal and malignant tissues. A cross-validation procedure confirmed the generality of this expression signature. We also identified 16 miRNAs that possibly could be used as a complement to current methods for grading of prostate tumor tissues.ConclusionsWe found an expression signature based on nine differentially expressed miRNAs that with high accuracy (85%) could classify the normal and malignant prostate tissues in patients from the Swedish Watchful Waiting cohort. The results show that there are significant differences in miRNA expression between normal and malignant prostate tissue, indicating that these small RNA molecules might be important in the biogenesis of prostate cancer and potentially useful for clinical diagnosis of the disease.

Highlights

  • MicroRNAs constitute a class of small non-coding RNAs that post-transcriptionally regulate genes involved in several key biological processes and are involved in various diseases, including cancer

  • In this study we included malignant prostate tissue and adjacent normal prostate tissue from twenty patients of the Swedish Watchful Waiting cohort, which consists of men with localized prostate cancer diagnosed by transurethral resection of the prostate (Table 1)

  • The principal component analysis (PCA) analysis performed on the smaller expression signature, including nine miRNAs, confirmed the results from the hierarchical clustering (Figure 3)

Read more

Summary

Introduction

MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that post-transcriptionally regulate genes involved in several key biological processes and are involved in various diseases, including cancer. The first microRNA (miRNA) was discovered in 1993 by Ambros and colleagues while they were performing a genetic screen in Caenorhabditis elegans They identified a gene, later named lin-4, which does not code for a protein but rather for a 22 nucleotide long RNA molecule. It was shown that the function of this small RNA is to repress the expression of the mRNA lin-14, by binding to the 3’UTR of the gene [3].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.