Abstract

Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.