Abstract

We present a structural characterization of all tournaments $T=(V,A)$ such that, for any nonnegative integral weight function defined on V, the maximum size of a feedback vertex set packing is equal to the minimum weight of a triangle in T. We also answer a question of Frank by showing that it is $NP$-complete to decide whether the vertex set of a given tournament can be partitioned into two feedback vertex sets. In addition, we give exact and approximation algorithms for the feedback vertex set packing problem on tournaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.