Abstract

This work describes an electrochemical technique that is suitable for the rapid and sensitive screening of the sweetener sucralose based on surface-stabilized bilayer lipid membranes (s-BLMs) composed of egg phosphatidylcholine. The interactions of sucralose with s-BLMs produced electrochemical ion current increases, which appeared reproducible within a few seconds after exposure of the membranes to the sweetener. The mechanism of signal generation was investigated by differential scanning calorimetric studies. The mechanism was found to be associated with alteration of the electrostatic fields of the lipid film. These studies revealed that an increase of the molecular area of the lipids at the membranes and a stabilization of a gel phase structure occurred due to adsorption of the sweetener. Water molecules are adsorbed at the polar headgroups of the lipids, which changes the electrostatic field at the surface of the membranes. The current signal increases were related to the concentration of sucralose in bulk solution in the micromolar range. The present lipid film based sensor provided a fast response (i.e. in the order of a few seconds) to alterations of sucralose concentration (5–50 μm) in electrolyte solution. The electrochemical transduction of the interactions of this artificial sweetener with s-BLMs was applied in the determination of this compound in granulated sugar substitute products using the present minisensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.