Abstract

Benthic microalgae (BMA) inhabit the upper few centimeters of shelf sediments. This review summarizes the current information on BMA communities in the South Atlantic Bight (SAB) region of the Southeastern US continental shelf to provide insights into the potential role of these communities in the trophodynamics and biogeochemical cycling in shelf waters. Benthic irradiance is generally 2–6% of surface irradiance in the SAB region, providing sufficient light to support BMA primary production over 80–90% of the shelf width. BMA biomass greatly exceeds that of integrated phytoplankton biomass in the overlying water column on an areal basis. The SAB appears to have lower BMA biomass, but higher production than most temperate continental shelves. Annual production estimates average 101 and 89 g C m−2 year−1 for 5–20 and > 20 depth intervals, respectively. However, high variation in rates and biomass in time and space make comparisons between studies difficult. Submarine groundwater discharge (SGD) rather than the water column or in situ N regeneration from organic matter maybe the major “new” N source for BMA. The estimated supply of N (1.2 mmol N m−2 day−1) by SGD closely approximates the rates needed to support BMA primary production (3.1 to 1.6 mmol N m−2 day−1) in the sediments of the SAB. Identifying the source(s) of fixed N supporting the BMA community is essential for understanding the carbon dynamics and net ecosystem metabolism within the large area (76,000 km2) of the continental shelf in the SAB as well other temperate shelves worldwide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call