Abstract
We treat the linear estimation problem with two simultaneous, competing objectives: minimum mean-squared error and minimum error-signal correlation. The latter objective minimizes the signal component in the error and maximizes the correlation of the estimator with the signal. The problem is solved, both for the scalar and stationary random process cases, as an optimal trade-off which produces a slightly higher mean-squared error and a much larger reduction in error-signal correlation over that of the minimum mean-squared error single objective solution. The optimal trade-off solution, which we call the mini-mum-error, minimum correlation (MEMC) filter is then applied to the problem of recovering space-invariant, blurred images with additive noise. As the theory predicts, the images restored through the MEMC filters are sharper and clearer than their minimum mean-squared error (Wiener) filter counterparts, but slightly noisier in appearance. Most viewers prefer the MEMC restorations to the Wiener ones, despite the noisier appearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.