Abstract

This paper introduces two estimators, a boundary corrected minimum variance kernel estimator based on a uniform kernel and a discrete frequency polygon estimator, for the cell probabilities of ordinal contingency tables. Simulation results show that the minimum variance boundary kernel estimator has a smaller average sum of squared error than the existing boundary kernel estimators. The discrete frequency polygon estimator is simple and easy to interpret, and it is competitive with the minimum variance boundary kernel estimator. It is proved that both estimators have an optimal rate of convergence in terms of mean sum of squared error, The estimators are also defined for high-dimensional tables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.