Abstract

This paper considers the decision problem for a minimum setup strategy of a production system arising in the assembly of printed circuit boards of different types, using a placement machine with multi‐slot feeders. We formulate the problem as a binary linear programming model, and propose a heuristic procedure to find the solution that consists of a board‐assembly sequence, an associated component loading and unloading strategy and a feeder‐assignment plan within reasonable computational effort. Computational results from solving the simulated problem instances by using the heuristic method and the mathematical model are provided and compared. The proposed heuristic procedure can be incorporated into the PCB scheduling optimization software to decrease cycle times and increase overall assembly throughput in a high‐mix, low‐volume PCB manufacturing environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.