Abstract

A minimum plastic power principle is proposed for a rigid-viscoplastic crystalline domain subdivided into two sets of lath-shaped regions, called bands. The lattice orientation in each band is assumed uniform and to differ infinitesimally from that in the other band. The proposed minimum principle yields the slip activity in the bands and semi-analytical expressions for the misorientation axis and orientation of band boundaries. These band boundary characteristics are predicted for f.c.c. lattice orientations near the ideal rolling texture components. Surprisingly, it found that the predicted band boundary characteristics closely match those of microstructural features called cell block boundaries reported in the experimental literature, except when the dislocations of activated slip systems are known to interact very strongly. This suggests that except when precluded by strong dislocation interactions, continuum extremum principles may also govern microstructural characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call