Abstract

We analyze a minimum energy problem for a discrete electrostatic model in the complex plane and discuss some applications. A natural characteristic distinguishing the state of minimum energy from other equilibrium states is established. It enables us to gain insight into the structure of positive trigonometric polynomials and Dirichlet spaces associated with finitely atomic measures. We also derive a related family of linear second order differential equations with polynomial solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.