Abstract
A new minimax inequality is first proved. As a consequence, five equivalent fixed point theorems are formulated. Next a theorem concerning the existence of maximal elements for an Lc-majorised correspondence is obtained. By the maximal element theorem, existence theorems of equilibrium points for a non-compact one-person game and for a non-compact qualitative game with Lc-majorised correspondences are given. Using the latter result and employing an “approximation” technique used by Tulcea, we deduce equilibrium existence theorems for a non-compact generalised game with LC correspondences in topological vector spaces and in locally convex topological vector spaces. Our results generalise the corresponding results due to Border, Borglin-Keiding, Chang, Ding-Kim-Tan, Ding-Tan, Shafer-Sonnenschein, Shih-Tan, Toussaint, Tulcea and Yannelis-Prabhakar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.