Abstract

Because of its involvement in HIV entry, the chemokine receptor CXCR4 is an attractive target for antiretroviral drugs. Despite the large number of CXCR4 inhibitors studied, the 3D pharmacophore for binding to CXCR4 remains elusive, mainly as a result of conformational flexibility inherent in the identified ligands. In the present study, an exhaustive systematic exploration of the conformational space for a series of analogs of FC131, a cyclopentapeptide CXCR4 antagonist, has been performed. By comparing the resulting low-energy conformations using different sets of atoms, specific conformational features common only to the high/medium affinity compounds were identified. These features included the spatial arrangement of three pharmacophoric side chains as well as the orientation of a specific backbone amide bond. Together these features represent a minimalistic 3D pharmacophore model for binding of the cyclopentapeptide antagonists to CXCR4. The model enables rationalization of the experimental affinity data for this class of compounds as well as for the peptidomimetic KRH-1636.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.