Abstract

Abstract Photoemission orbital tomography provides direct access from laboratory measurements to the real-space molecular orbitals of well-ordered organic semiconductor layers. Specifically, the application of phase retrieval algorithms to photon-energy- and angle-resolved photoemission data enables the direct reconstruction of full 3D molecular orbitals without the need for simulations using density functional theory or the like. A major limitation for the direct approach has been the need for densely-sampled, well-calibrated 3D photoemission patterns. Here, we present an iterative projection algorithm that completely eliminates this challenge: for the benchmark case of the pentacene frontier orbitals, we demonstrate the reconstruction of the full orbital based on a dataset containing only four simulated photoemission momentum measurements. We discuss the algorithm performance, sampling requirements with respect to the photon energy, optimal measurement strategies, and the accuracy of orbital images that can be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call