Abstract

The hypothalamic-pituitary-adrenal axis (also called the HPA or stress axis) exhibits distinct circadian and ultradian rhythms in cortisol release that cannot be explained solely by the feedback loops from cortisol to the control systems in the paraventricular nucleus (PVN) and pituitary gland. The HPA axis is intimately connected with other brain functions. In particular, it is strongly affected by the sleep-wake cycles via direct and indirect effects of the circadian and homeostatic mechanisms. For example, the HPA axis has direct inputs from the master circadian clock in the suprachiasmatic nuclei (SCN), and from the various sleep-wake related neuronal populations, which themselves are under the effects of the circadian and homeostatic processes. In this paper a first step towards a physiologically based mathematical model of the HPA-axis under effects of the sleep-wake cycles is presented. This model accounts for 3 major characteristics of daily cortisol profile in the blood: i) abrupt increase of cortisol concentration in response to awakening, the so-called cortisol-awakening response (CAR); ii) reduced cortisol levels during daytime with underlying ultradian oscillations; and iii) suppression of cortisol release during sleep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.