Abstract

Numerous mathematical models of periodic breathing (PB) currently exist. These models suggest mechanisms that may underlie many known causes of PB. However, each model that has been shown to simulate PB under reasonable conditions contains greater than 15 physiological parameters. Because some parameters exhibit a wide range of values in a population, such simulations cannot test a model's ability to account for the breathing patterns of individuals. Furthermore it is impractical to perform a direct experimental validation study that would require the estimation of each of 15 or more parameters for each subject. A minimal model of PB is presented that is suitable for direct validation. Analytic expressions are given that define the conditions for PB in terms of the following: 1) CO2 sensitivity, 2) Cardiac output, 3) Mixed venous CO2, 4) Circulation time, and 5) Mean lung volume for CO2. This model is shown to be consistent with previous models and experimental data regarding the degree of hypoxia or congestive heart failure required to produce PB. A quantitative measure of relative stability is defined as a metric of comparison to the human studies described in the accompanying paper (J. Appl. Physiol. 65: 1389-1399, 1988).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.