Abstract

We aim at developing methods to track minimal energy solutions of time-independent m-component coupled discrete nonlinear Schrödinger (DNLS) equations. We first propose a method to find energy minimizers of the 1-component DNLS equation and use it as the initial point of the m-component DNLS equations in a continuation scheme. We then show that the change of local optimality occurs only at the bifurcation points. The fact leads to a minimal energy tracking method that guides the choice of bifurcation branch corresponding to the minimal energy solution curve. By combining all these techniques with a parameter-switching scheme, we successfully compute a non-radially symmetric energy minimizer that can not be computed by existing numerical schemes straightforwardly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.