Abstract
Cosmic far-infrared background (CFIRB) probes unresolved dusty star-forming galaxies across cosmic time and is complementary to ultraviolet and optical observations of galaxy evolution. In this work, we interpret the observed CFIRB anisotropies using an empirical model based on resolved galaxies in ultraviolet and optical surveys. Our model includes stellar mass functions, star-forming main sequence, and dust attenuation. We find that the commonly used linear Kennicutt relation between infrared luminosity and star formation rate overproduces the observed CFIRB amplitudes. The observed CFIRB requires that low-mass galaxies have lower infrared luminosities than expected from the Kennicutt relation, implying that low-mass galaxies have lower dust content and weaker dust attenuation. Our results demonstrate that CFIRB not only provides a stringent consistency check for galaxy evolution models but also constrains the dust content of low-mass galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.