Abstract

A dimensionless parameter Λ is proposed to describe a hierarchy of morphologies in two-dimensional (2D) aggregates formed due to varying competition between short-range attraction and long-range repulsion. Structural transitions from finite non-compact to compact to percolated structures are observed in the configurations simulated by molecular dynamics at a constant temperature and density. Configurational randomness across the transition, measured by the two-body excess entropy S2, exhibits data collapse with the average potential energy [small epsilon, Greek, macron] of the systems. Independent master curves are presented among S2, the reduced second virial coefficient B2* and Λ, justifying this minimal description. This work lays out a coherent basis for the study of 2D aggregate morphologies relevant to diverse nano- and bio-processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.