Abstract

The perturbative configuration interaction approach based on non-orthogonal bond-orbitals previously used for dealing with rotational barriers is applied to the study of the hydrogen bonding in the linear water dimer. First and second-order interaction energies are obtained in terms of static and transition charge distributions fully accounting for intermolecular overlap. Neglecting electron correlation, the second-order calculations include all single excitations from bonding to antibonding orbitals accounting for induction including exchange and giving results close to the corresponding supermolecular SCF-MOs in the same basis. Ab initio calculations using different gaussian minimal bases show that Clementi's GTO basis MEDIUM is the most suitable for describing molecular interactions. Detailed component analysis of the energy up to second order is possible and reveals the main features of the intermolecular hydrogen bonding occurring between the water molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.