Abstract

Escherichia coli SgrS is an Hfq-binding small RNA that is induced under glucose-phosphate stress to cause translational repression and RNase E-dependent rapid degradation of ptsG mRNA encoding the major glucose transporter. A 31-nt-long stretch in the 3' region of SgrS is partially complementary to the translation initiation region of ptsG mRNA. We showed previously that SgrS alone causes translational repression when pre-annealed with ptsG mRNA by a high-temperature treatment in vitro. Here, we studied translational repression of ptsG mRNA in vitro by synthetic RNA oligonucleotides (oligos) to define the SgrS region required for translational repression. We first demonstrate that a 31 nt RNA oligo corresponding to the base-pairing region is sufficient for translational inhibition of ptsG mRNA. Then, we show that RNA oligo can be shortened to 14 nt without losing its effect. Evidence shows that the 14 nt base-pairing region is sufficient to inhibit ptsG translation in the context of full-length SgrS in vivo. We conclude that SgrS 168-181 is a minimal base-pairing region for translational inhibition of ptsG mRNA. Interestingly, the 14 nt oligo efficiently inhibited ptsG translation without the high-temperature pre-treatment, suggesting that remodelling of structured SgrS is an important mechanism by which Hfq promotes the base pairing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call