Abstract
We consider the problem of minimizing the sum of an average of a large number of smooth convex component functions and a possibly nonsmooth convex function that admits a simple proximal mapping. This class of problems arises frequently in machine learning, known as regularized empirical risk minimization (ERM). In this article, we propose mSRGTR-BB, a minibatch proximal stochastic recursive gradient algorithm, which employs a trust-region-like scheme to select stepsizes that are automatically computed by the Barzilai-Borwein method. We prove that mSRGTR-BB converges linearly in expectation for strongly and nonstrongly convex objective functions. With proper parameters, mSRGTR-BB enjoys a faster convergence rate than the state-of-the-art minibatch proximal variant of the semistochastic gradient method (mS2GD). Numerical experiments on standard data sets show that the performance of mSRGTR-BB is comparable to and sometimes even better than mS2GD with best-tuned stepsizes and is superior to some modern proximal stochastic gradient methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.