Abstract

A urea biosensor prepared by covalent binding of urease directly to the surface of an ammonium-sensitive field effect transistor (FET) is described. Nonactin incorporated in carboxylated polyvinyl chloride was used to obtain the sensitive membrane of the ammonium-sensitive FET. The grafting of urease on the polyvinylchloride–COOH membrane surface was performed through carbodiimide coupling. The activity of the immobilized enzyme was spectrometrically controlled through the time-dependent disappearance of the absorbance of NADH at 340 nm. An apparent activity of 50% was found, compared with free enzyme. The sensitivity of the urea enzyme FET is 50 mV/pUrea working in a differential mode of 2 μM to 1 mM, this sensitivity being constant during 15 days. Finally, in order to test the potentialities of the urea biosensor for the environmental applications, the detection of heavy metal ions such as Cu(II) and Hg(II) in solution was performed by measuring the remaining activity of the inhibited enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call