Abstract

A new flow batch (FB) system for chemical vapor generation (CVG) is proposed for mercury (Hg) determination in fish. An inductively coupled plasma mass spectrometer was used as a detector. Low-cost peristaltic mini pumps were used to propel the solutions and different configurations of FB systems (reactor/gas/liquid separator) were studied. The proposed configuration of the FB-CVG system allows good sensitivity, low limit of detection (LOD) and low consumption of reagents and sample solutions. In summary, only 1 mL of reductant, 1 mL of acid and 0.16 mL of sample are needed. The proposed method has good linearity, precision (better than 5 %), LOD of 0.008 μg g−1 and LOQ of 0.012 μg g−1, and high sample throughput, allowing 90 measurements/h. The accuracy of the method was evaluated through the analysis of a certified reference material (DOLT-4 Dogfish Liver), whose result is in good agreement with certified value (t-test with 95 % confidence level) and the quantification limit meets current legislations, of 1.0 μg g−1 (Brazil) and 0.3 μg g−1 (EU). In addition, analyte recovery test was done, where Hg recovery was better than 95 %, demonstrating the good analytical performance of the method. To demonstrate the applicability of the method, five samples of fish tissue (muscle) were analyzed. The proposed FB-CVG system, in addition to being low cost, is robust and requires only the volume of reagents necessary for Hg vapor generation, producing a very low amount of waste. It can be concluded that the proposed system can be used for routine analysis for Hg determination in fish tissue. It is worth noting that with the appropriate adjustments, the system can be coupled to different Hg detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call