Abstract
Breast cancer is among the frequently diagnosed cancers worldwide and is associated with a high mortality rate, especially when diagnosed late. Minimally invasive screening approaches based on an assessment of extracellular vesicle (EV)-encapsulating microRNA biomarkers have enabled earlier diagnosis and improved survival rates. Since field-effective transistors (FET) featuring complementary metal oxide semiconductor technology have been previously converted into highly sensitive biosensors, an integrated microfluidic system (IMS) was developed herein for quantifying concentrations of breast cancer biomarkers including microRNA-195 and microRNA-126. Following a (1) 4-h process in which 84% of the EVs were captured, (2) 20-min hybridization step in which 85 and 94% of the microRNA-195 and microRNA-126 were isolated, respectively, and (3) the DNA-FET biosensors could detect down to 84 and 75 aM concentrations of microRNA-195 and microRNA-126, respectively. The IMS automated the entire biomarker quantification process within 5 h, highlighting its potential as a sensitive platform for early-stage breast cancer diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.