Abstract

Solar system exploration and the anticipated discovery of biomarker molecules is driving the development of a new miniature time-of-flight (TOF) mass spectrometer (MS). Space flight science investigations become more feasible through instrument miniaturization, which reduces size, mass, and power consumption. However, miniaturization of space flight mass spectrometers is increasingly difficult using current component technology. Micro electro mechanical systems (MEMS) and nano electro mechanical systems (NEMS) technologies offer the potential of reducing size by orders of magnitude, providing significant system requirement benefits as well. Historically, TOF mass spectrometry has been limited to large separation distances as ion mass analysis depends upon the ion flight path. Increased TOF MS system miniaturization may be realized employing newly available high speed computing electronics, coupled with MEMS and NEMS components. Recent efforts at NASA Goddard Space Flight Center in the development of a miniaturized TOF mass spectrometer with integral MEMS and NEMS components are presented. A systems overview, design and prototype, MEMS silicon ion lenses, a carbon nanotube electron gun, ionization methods, as well as performance data and relevant applications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call