Abstract
The capability to design and modulate materials, shapes, heat transfer, and mass mixing during the process of developing chemical reactors has allowed researchers to explore millions of chemical reactions and assays. However, despite the advantages in engineering array-based microreactors or microfluidic systems, the wetting attachment between solutions of reagents/products and the glass or polymer substrates of containers leads to difficulties in collecting products effectively and preventing channel blockage. Herein we present a miniature droplet reactor which takes advantage of the anti-wetting and low-adhesive properties of nanoparticle-derived superhydrophobic pedestals, allowing aqueous droplets to be manipulated freely but also providing a confined environment for performing a series of aqueous phase chemical reactions on a small scale. Gas- or precipitate-forming reactions can also be performed inside this miniature reactor. Most importantly, reaction products in liquid, solid or gaseous states can be collected effectively, which allows the harvesting of valuable products formed in limited amounts. Such a miniature reactor built on superhydrophobic pedestals provides a new way of performing common chemical reactions and may open the door to the design of next-generation microreaction systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.