Abstract
A meshless shell method for large deformation and a linear relation between the Cauchy stress tensor and the Almansi strain tensor based on the corrective smoothed particle method (CSPM) is presented in this paper. Due to the use of the shell theory, only one layer of particles in the reference plane is required to discretize the shell model. The CSPM combining the kernel estimate with the Taylor series expansion is adopted, which resolves the general problems of low precision and particle deficiency in standard smoothed particle hydrodynamics (SPH). The discrete governing equations of the shell in the strong form are derived using the conservation condition and the CSPM interpolation function. Aiming at the sore point of the free boundary in the meshless method, the developed model enables the modified governing equations to automatically satisfy the free boundary condition without additional treatment. Moreover, the total Lagrangian kernel function and stress points are employed to eliminate tensile instability and instability induced by the rank deficiency. Finally, several numerical examples are used to verify the validity and accuracy of the meshless shell model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.