Abstract

In this article, we study the numerical approximation of stochastic differential equations driven by a multidimensional fractional Brownian motion (fBm) with Hurst parameter greater than 1/3. We introduce an implementable scheme for these equations, which is based on a second order Taylor expansion, where the usual Levy area terms are replaced by products of increments of the driving fBm. The convergence of our scheme is shown by means of a combination of rough paths techniques and error bounds for the discretisation of the Levy area terms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call