Abstract
In this paper, a fully integrated active backscatter transponder based on the switched injection-locked oscillator (SILO) principle for frequency-modulated continuous-wave radar applications is presented. Furthermore, a method to characterize a SILO amplifier is extended and utilized to measure the system parameters of the presented backscatter tag that operates at 34.45 GHz. It is digitally tunable from 32.7 to 35.4 GHz and reaches an unpulsed output power of 5 dBm. Above injection power levels of $-\hbox{53 dBm}$ , the SILO tag responds phase coherent at its maximum output power. In system measurements, the SILO backscatter transponder was used to perform distance measurements at ranges from 0.7 to 11.5 m. A remarkably good mean distance measurement error of 7 cm with a standard deviation of 10 cm was achieved in a strong multipath environment. The single measurement precision is below 3 mm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.