Abstract

A new type of millimeter-wave integrated-circuit antenna is based on a quasi-optical design is investigated. It consists of a Fresnel zone plate on one side of a dielectric substrate and a resonant strip dipole antenna at the focus of the zone plate on the opposite side of the substrate. All of the components are made using simple integrated-circuit fabrication techniques: thin-film metal depositions on planar dielectric substrates. Another features of this design is the short focal length of the zone plate; the focal length/diameter (f/d) for the zone plates studied ranges from 0.1 to 0.5. The antennas described are for a frequency of 230 GHz ( lambda /sub 0/=1.3 mm); however, the design is easily scaled to other millimeter-wave or submillimeter-wave frequencies. Measured results are reported for four different focal length zone plates. Moderate gains, above 20 dB, are obtained. A theory is developed which predicts the on-axis gain, beamwidth, and sidelobe levels. Design graphs are given to aid in the selection of the geometrical parameters to achieve a desired gain from the integrated-circuit zone-plane antenna.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call