Abstract
Military object detection from Unmanned Aerial Vehicle (UAV) reconnaissance images faces challenges, including lack of image data, images with poor quality, and small objects. In this work, we simulate UAV low-altitude reconnaissance and construct the UAV reconnaissance image tank database UAVT-3. Then, we improve YOLOv5 and propose UAVT-YOLOv5 for object detection of UAV images. First, data augmentation of blurred images is introduced to improve the accuracy of fog and motion-blurred images. Secondly, a large-scale feature map together with multi-scale feedback is added to improve the recognition ability of small objects. Thirdly, we optimize the loss function by increasing the loss penalty of small objects and classes with fewer samples. Finally, the anchor boxes are optimized by clustering the ground truth object box of UAVT-3. The feature visualization technique Class Action Mapping (CAM) is introduced to explore the mechanisms of the proposed model. The experimental results of the improved model evaluated on UAVT-3 show that the mAP reaches 99.2%, an increase of 2.1% compared with YOLOv5, the detection speed is 40 frames per second, and data augmentation of blurred images yields an mAP increase of 20.4% and 26.6% for fog and motion blur images detection. The class action maps show the discriminant region of the tanks is the turret for UAVT-YOLOv5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.