Abstract

We present a new ambient temperature synthetic approach for the preparation of single-chain polymeric nanoparticles (SCNPs) under mild conditions using a UV-light-triggered Diels–Alder (DA) reaction for the intramolecular cross-linking of single polymer chains. Well-defined random copolymers with varying contents of styrene (S) and 4-chloromethylstyrene (CMS) were synthesized employing a nitroxide-mediated radical polymerization (NMP) initiator functionalized with a terminal alkyne moiety. Postpolymerization modification with 4-hydroxy-2,5-dimethylbenzophenone (DMBP) and an N-maleimide (Mal) derivative led to the functional linear precursor copolymers. The intramolecular cross-linking was performed by activating the DMBP groups via irradiation with UV light of 320 nm for 30 min in diluted solution (cPolymer = 0.017 mg mL–1). The ensuing DA reaction between the activated DMBP and the Mal groups resulted in well-defined single-chain polymeric nanoparticles. To control the size of the SCNPs, random copolymers with varying CMS contents (i.e., different functional group densities (FGD)) were employed for the single-chain collapse. Additionally, monotethered nanoparticles were prepared via the copper-catalyzed azide–alkyne cycloaddition between the alkyne bearing copolymer with the highest FGD and an azide-terminated poly(ethylene glycol) (PEG) prior to UV-induced cross-linking. The formation of SCNPs was followed by size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call