Abstract

A midregion fragment of PTH-related protein (PTHrP), which is intensively conserved across species, has been identified as a secretory product of several different cell types, including keratinocytes and squamous carcinomas. As recent data suggest that a midregion PTHrP fragment may be biologically active, we hypothesized that midregion PTHrPs interact with unique cell surface receptors that mediate autocrine or paracrine action. Dose-dependent transient elevations in intracellular calcium ([Ca2-]i) were observed in fura-2-loaded SqCC/Y1 squamous carcinoma cells exposed to human (h) PTHrP-(67-86)NH2, [Tyr36]hPTHrP-(1-36)NH2, and hPTHrP-(1-141) at concentrations ranging from 1 pM to 1 microM. The effects of maximal stimulatory concentrations of [Tyr36]PTHrP-(1-36)NH2 and PTHrP-(67-86)NH2 on [Ca2+]i were additive. The inhibitory PTH analog, [D-Trp12,Tyr34]bovine PTH-(7-34)NH2, attenuated the [Ca2+]i response to [Tyr36]hPTHrP-(1-36)NH2, but not that to PTHrP-(67-86)NH2. These data suggest that PTHrP-(67-86)NH2 activates a different receptor pathway in SqCC/Y1 cells from the one activated by [Tyr36]hPTHrP-(1-36)NH2. Radiolabeled PTHrP-(67-86)NH2 did not bind to SqCC/Y1 cells, and PTHrP-(67-86)NH2 did not compete for binding of 125I-labeled [Tyr36]PTHrP-(1-36)NH2 to PTH/PTHrP receptors on SaOS-2 osteosarcoma cells. Activation of the phospholipase C pathway by PTHrP-(67-86)NH2 was confirmed by exposing SqCC/Y1 cells to peptide for 1 min and measuring the accumulation of inositol trisphosphates. PTHrP-(67-86)NH2 treatment (100 nM) resulted in maximal stimulation of inositol trisphosphates of 3.1 +/- 0.1-fold over the control value, with an EC50 of 1.5 +/- 1.2 nm. In contrast, PTHrP-(67-86)NH2 (0.1 nM to 1 microM) did not stimulate adenylyl cyclase in SqCC/Y1 cells despite vigorous stimulation of cAMP formation by isoproterenol (1 microM) to 66-fold over the basal value. To determine whether messenger RNA (mRNA) prepared from SqCC/Y1 cells would direct the translation of a receptor protein that mediated a [Ca2+]i response to PTHrP-(67-86)NH2, we performed expression studies in Xenopus oocytes. Fluo-3 fluorescence in Xenopus oocytes expressing SqCC/Y1 mRNA was visualized by confocal video microscopy after exposure to 1 microM PTHrP-(67-86)NH2. Clear increases in [Ca2+]i were detected in mRNA-injected, but not in sham-injected, oocytes. Finally, we examined the effect of PTHrP-(67-86)NH2 treatment on fibronectin secretion from SqCC/YN1 cells. A significant 3.5-fold increase in fibronectin secretion into conditioned medium was observed when SqCC/Y1 cells were exposed to 100 nM PTHrP-(67-86)NH2, and this effect was dose dependent, with an EC50 of 0.1 nM. We conclude that PTHrP-(67-86)NH2 activates phospholipase C-dependent pathways in SqCC/Y1 cells through a receptor distinct from that activated by PTHrP-(1-36) in the same cells. As a midregion secretory fragment of PTHrP has been partially purified from several different cell types, this receptor may have broad biological significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call