Abstract

AbstractThe Tibetan Plateau is an important area for studying global climate change, but the answers to many scientific problems remain unknown. Here, we present new information from the lacustrine sedimentary record in the western Tibetan Plateau, related to the third most‐recent glaciations. Continuous sediment data, including sporopollen, particle size, total organic carbon, mass susceptibility, CaCO3, CaSO4, BaSO4 contents and chronological data, were reconstructed and revealed that climate and environmental conditions obviously and distinctly changed between 600 and 700 thousand years ago. In comparison, the data obtained from the Guliya ice core in this area also corresponds to the global glacial climatic characteristics recorded in basin sediments in the eastern and southeastern regions of the plateau and to the information obtained from ice cores in the Antarctic and Arctic regions. In this study, we conclude that the main reason for the glaciations and new tectonic movement must be a geomagnetic polarity reversal 774 thousand years ago (from Matuyama to Brunhes). Indeed, the results of this study suggest that the described reversal event might have influenced the current global climate pattern and will continue to impact climatic changes in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call