Abstract
The hepatitis B virus (HBV) ribonuclease H (RNaseH) is a promising but unexploited drug target. Inhibiting the RNaseH blocks viral reverse transcription by truncating the minus-polarity DNA strand, causing accumulation of RNA:DNA heteroduplexes, and abrogating plus-polarity DNA synthesis. Screening for RNaseH inhibitors is complicated by the presence of the minus-polarity DNA strand even when replication is fully inhibited because this residual DNA can be detected by standard screening assays that measure reduction in total HBV DNA accumulation. We previously developed a strand-preferential qPCR assay that detects RNaseH replication inhibitors by measuring preferential suppression of the viral plus-polarity DNA strand. However, this assay employed cells grown in 6- or 12-well plates and hence was of very low throughput. Here, we adapted the assay to a 96-well format and conducted a proof-of-principle screen of 727 compounds. The newly developed assay is a valuable tool for anti-HBV drug discovery, particularly when screening for RNaseH inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.