Abstract

Perfluorocarbon (PFC) compounds have been used as chemical tracer molecules to understand the movement of supercritical carbon dioxide for geosequestration monitoring and verification purposes. A commonly used method for detecting PFCs involves the collection of a sample from either soil-gas or the atmosphere via carbon-based sorbents which are then analyzed in a laboratory. However, PFC analysis in aquatic environments is neglected and this is an issue that needs to be considered since the PFC is likely to undergo permeation through the overlying water formations. This paper presents for the first time an innovative analytical method for the trace level in situ detection of PFCs in water. It reports on the development of a sensor based on mid-infrared attenuated total reflection (MIR-ATR) spectroscopy for determining the concentration of perfluoromethylcyclohexane (PMCH) and perfluoro-1,3-dimethylcyclohexane (PDCH) in aquatic systems. The sensor comprises a zinc selenide waveguide with the surface modified by a thin polymer film. The sensitivity of this device was investigated as a function of polymer type, coating thickness, and solution flow rates. The limit of detection (LOD) was determined to be 23ppb and 79ppb for PMCH and PDCH, respectively when using a 5μm thick polyisobutylene (PIB) coated waveguide. This study has shown that the MIR-ATR sensor can be used to directly quantify PFC-based chemical tracer compounds in water over the 20–400ppb concentration range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.