Abstract

Surface plasmon resonance imaging (SPRi) offers a compelling method for high-throughput, real-time, and label-free biomolecular interaction studies and immunoassays, but its performance suffers from limited intrinsic sensitivity and low-contrast SPRi images. Herein we report a high-performance SPRi chip featuring patterned microwell array constructed by photolithography of adhesive polydopamine (PDA) thin film on conventional gold chip. The chip allows for the facile construction of region-defined sensing array on its surface with improved intrinsic SPRi sensitivity due to the intensified surface plasmon wave (SPW) in the microwells. The immunoassay performance of the as-designed SPRi chip is evaluated by using anti-ochratoxin A (anti-OTA) monoclonal antibody as a model target. The results show that this microwell array structured gold chip exhibits ca. 18%-32% higher signal intensity than the conventional gold chip when detecting anti-OTA at different concentrations, and the noise remains at the same level, showing enhanced intrinsic sensitivity. Meanwhile, this microwell-structured chip affords clear and high-contrast SPRi images with well-defined sensing areas, which greatly facilitates the extraction and quantitative analysis of detection signals while efficiently suppressing the disturbance from background areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call