Abstract
A facile microwave method was employed to synthesize NiCo2 O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller methods. Owing to the porous nanosheet structure, the NiCo2 O4 electrodes exhibited a high reversible capacity of 891 mA h g(-1) at a current density of 100 mA g(-1) , good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2 O4 nanosheets demonstrated a specific capacitance of 400 F g(-1) at a current density of 20 A g(-1) and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode-electrolyte contact area and facilitate rapid ion transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.