Abstract

We present here the first experimental and theoretical study of the microwave spectrum of 5-methyltropolone, which can be visualized as a seven-membered "aromatic" carbon ring with a five-membered hydrogen-bonded cyclic structure at the top and a methyl group at the bottom. The molecule is known from earlier studies in the literature to exhibit two large-amplitude motions, an intramolecular hydrogen transfer and a methyl torsion. The former motion is particularly interesting because transfer of the hydrogen atom from the hydroxyl to the carbonyl group induces a tautomerization in the molecule, which then triggers a 60° internal rotation of the methyl group. Measurements were carried out by Fourier-transform microwave spectroscopy in the 8-24 GHz frequency range. Theoretical analysis was carried out using a tunneling-rotational Hamiltonian based on a G(12)(m) extended-group-theory formalism. Our global fit of 1015 transitions to 20 molecular parameters gave a root-mean-square deviation of 1.5 kHz. The tunneling splitting of the two J=0 levels arising from a hypothetical pure hydrogen-transfer motion is calculated to be 1310 MHz. The tunneling splitting of the two J=0 levels arising from a hypothetical pure methyl top internal-rotation motion is calculated to be 885 MHz. We have also carried out ab initio calculations, which support the structural parameters determined from our spectroscopic analysis and give estimates of the barriers to the two large-amplitude motions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call