Abstract

Polyglutamine (polyGln) aggregates are neuropathological markers of expanded CAG repeat disorders, and may also play a critical role in the development of these diseases. We have established a highly sensitive, fast, reproducible, and specific assay capable of monitoring aggregate-dependent deposition of polyglutamine peptides. This assay allows detailed studies on various aspects of aggregation kinetics, and also makes possible the detection and quantitation of low levels of “extension-competent” aggregates. In the simplest form of this assay, polyGln aggregates are made from chemically synthesized peptides and immobilized onto microplate wells. These wells are incubated for different times with low concentrations of a soluble biotinylated polyGln peptide. Europium-streptavidin complexation of the immobilized biotin, followed by time-resolved fluorescence detection of the deposited europium, allows us to calculate the rate (fmol/h) of incorporation of polyGln peptides into polyGln aggregates. This assay will make possible basic studies on the assembly mechanism of polyGln aggregates and on critical features of the reaction, such as polyGln length dependence. The assay also will be a valuable tool for screening and characterizing anti-aggregation inhibitors. It will also be useful for detection and quantitation of aggregation-competent polyGln aggregates in biological materials, which may prove to be of critical importance in understanding the disease mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.