Abstract

As-cast NiAl bronze (NAB) was subjected to friction stir processing (FSP). Orientation imaging microscopy (OIM) methods were used to obtain microtexture data in the stir zone (SZ) and along its periphery. At selected SZ locations, orientation data were obtained by convergent beam electron diffraction (CBED) methods in transmission electron microscopy (TEM). Random α phase textures were apparent in the SZ. The α grains tended to be equiaxed, exhibited annealing twins, and were refined to 1 to 2 µm at the edge of the SZ. The population of subgrain boundaries in α phase grains was highest near the plate surface in contact with the tool and decreased with depth in the SZ, reflecting deformation by the tool shoulder after the passage of the tool pin. Distinct shear texture components were apparent in the thermomechanically affected zone (TMAZ) outside of and along the periphery of the SZ. A texture gradient from the TMAZ into the SZ was apparent and was steeper on the advancing side and under the SZ center than on the retreating side. The apparent shear plane tended to align with the local interface between the SZ and TMAZ, while the shear direction tended to align with the FSP traversing direction. In this material, the SZ-TMAZ interface is a distinct boundary between recrystallized and deformed regions and the α-phase grain refinement reflects dynamic recrystallization and, in locations near the SZ-TMAZ interface, particle-stimulated nucleation (PSN) at undissolved Fe3Al particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.