Abstract

Background and Objective:The current dental restorative concepts are characterized by an increased effort towards a less invasive treatment of carious lesions. Minimally invasive cavity preparation techniques are intended to preserve as much sound enamel and dentin as possible, during the treatment of carious lesions. The objective of this in vitro study is to evaluate the microtensile bond strength of single-etch adhesives (Adper Easy one) on caries-affected dentin, following three different caries removal techniques, namely, Carisolv, Conventional carbide bur at slow speed, and aqueous calcium hydroxide.Materials and Methods:A total of 30 teeth were divided into three groups and arranged with 10 samples in each group - round bur (Group A), Carisolv (Group B), Aqueous calcium hydroxide (Group C). Following caries excavation by using the three above -mentioned techniques, application of the bonding agent and composite buildup was done. Following sectioning of the samples with the help of a hard tissue microtome, Group A, B, and C were again trimmed into an hour-glass shape, maintaining a width of 1.2 mm in the center of an hour glass. These were debonded under a microtensile load at failure, using the Instron Universal Testing Machine.Results:There was a significantly lower microtensile bond strength in the group where the caries was removed by the round bur, as compared to the group where the caries was removed by using Carisolv and calcium hydroxide, which showed higher microtensile bond strength, that is, the significant pairing of Groups were Group A to Group B and Group A to Group C, exhibiting statistically significant difference with a P < 0.001. However, there was no statistically significant difference between Group B and Group C.Interpretation and Conclusion:Carisolv and aqueous calcium hydroxide have proven to be good methods of caries removal for achieving a higher microtensile bond strength of the single-bottle self-etch adhesive on dentin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.