Abstract

A multiscale approach was proposed to predict the macroscopic forming limit of Q&P980 steel. The microstructure-based simulation was implemented in the microscopic simulation to obtain the macroscopic stress-strain curve. The representative volume element (RVE) was established using the data extracted from the characterised results of electron back-scattered diffraction (EBSD). The microscopic constitutive model of each constituent phase was determined based on a new method. The acquired macroscopic stress-strain curve was extrapolated using the modified Power-Law (MPL) strain hardening model. In the macroscopic simulation, the Nakajima and Marciniak-Kuczynski (M-K) simulations were combined to obtain the macroscopic forming limit only based on the macroscopic stress-strain curve. The microscopic and macroscopic simulations show good agreement with the experiment results, verifying the multiscale approach's accuracy. This study provides a solution for the direct connection between the microstructure and macroscopic forming limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.