Abstract

Abstract Part-2 of this paper is focused on modeling the acoustic emission (AE) energy rate as a function of the specific cortical bone microstructures (viz., osteon, interstitial matrix, lamellar bone, and woven bone) and the depth-of-cut encountered by the bone sawtooth. First, the AE signal characteristics from the sawing experiments (in Part-1) are related to the pure haversian and pure plexiform regions of the cut. Using the cutting force predictions from Part-1 as input, the AE energy rate is then modeled in terms of the energies dissipated in the shearing and ploughing zones encountered by the rounded cutting edge. For this calculation, the rounded edge geometry of the sawtooth is modeled as a combination of (i) shear-based cutting from a negative rake cutting tool; and (ii) ploughing deformation from a round-nose indenter. The spread seen in the AE energy rate is captured by modeling the variations in sawed surface height profile, tool cutting edge geometry, and porosity of the bone. The model calibration and validation protocols are similar to those used in Part-1. The validated AE model is useful for process planning both in terms of its ability to predict AE energy rate trends and cutting force variations, based on the differences in the underlying bone microstructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call