Abstract

In this study, a mathematical model has been developed to predict austenite grain size (AGS) of hot rolled steel. Using the compression test, the static (SRX) and metadynamic (MDRX) recrystallization characteristics of medium carbon steel were studied. Compression tests were carried out at various temperatures in the range 900–1100 °C with strain rates ranging from 0.1 to 10 s −1. The time required for 50% recrystallization for the SRX and MDRX was determined by carrying out double compression tests, respectively. Grain growth equation after full recrystallization was also derived by compression tests with various interpass times. The currently determined microstructure model has been integrated with a three-dimensional non-isothermal finite element program. The predicted results based on the model proposed in the present investigation for hot bar rolling processes were compared with the experimental data available in the literature. It was found that the proposed model was beneficial to understand the effect of recrystallization behavior and control the microstructure evolution during the hot bar rolling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.