Abstract

When an electronic package encounters thermal fluctuations, cyclical shear strain is imposed on the solder joint interconnections. The thermal cycling leads to a condition of thermal fatigue and eventual solder joint failure. This study was performed in order to understand the microstructural mechanisms that lead to solder joint failures in thermal fatigue. Thermal cycling tests were performed on 60Sn-40Pb joints using a -55° C to 125° C cycle and 19% imposed shear strain. A heterogeneously coarsened region of both Pb and Sn-rich phases develops within the 60Sn-40Pb solder joints. Cracks initiate in the heterogeneously coarsened Sn-rich phase at the Sn-Sn grain boundaries. Heterogeneous coarsening and failure occurs in both high (35 to 125° C) and low (-55 to 35° C) thermal cycles. The elevated temperature portion of the thermal cycle was found to be the most significant factor in the heterogeneous coarsening and failure of the solder joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.