Abstract

ABSTRACTA microscale cellular automaton-finite difference model was developed to simulate the solidification process of binary alloys. The velocity of the solid/liquid interface is determined by solute diffusion and local equilibrium at the dendrite tip. The crystallographic orientation of grains is simulated using a modified implementation of the decentred square growth technique first developed by Gandin & Rappaz.1 The relationship between the tip undercooling of columnar dendrites and the misorientation was obtained. The model was applied to simulate converging and diverging competitive grain growth, with good agreement to experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.