Abstract

A model of articular cartilage is developed in which the continuum stiffness tensor is related to the tissue's microstructure. The model consists of bilinear elastic fibers embedded in an elastic matrix. Homogenization techniques are used to relate this level of organization to the macroscopic response of the tissue. The model includes the effects of spatial orientation of fibers, pre-stress in the fibers and matrix resulting from matrix swelling, slipping at the interface between the fibers and the matrix, fiber buckling in compression, and deformation-induced fiber reorientation. The model predicts increased axial stiffness with increasing stretch due to fiber reorientation, reduced axial and shear stiffness with slipping between fiber and matrix and a sensitivity of the tissue response to the swelling pressure in the matrix, the matrix modulus and the bonding of the fiber matrix interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.