Abstract

A series of ring compression tests, conducted both quasi-statically (using a Zwick tensile test machine) and dynamically (using a split Hopkinson bar) are presented. The friction conditions were inferred from the behaviour of the inner diameter of the ring specimen using the analysis of Avitzur. Both quasi-static and dynamic specimens displayed machining rings. Microstructural analysis revealed that under quasi-static conditions the machining rings correlate with fold-over, while under dynamic conditions machining rings can appear without fold over. This indicates that machining rings formed during dynamic tests may be due to lubrication breakdown. The results indicate that the assumption of uniform specimen deformation is reasonable for strains attainable during split Hopkinson bar tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call